【数学】早稲田大学の2016年数学の問題の答えについて
こんにちは!
セルフです★
いつぞやの、
数学の問題が解けました☺️✨w
ただ、
ここに載せる手段がなく、
戸惑っていますw
画像を載せようかと思ったのですが、
どう頑張っても、字が小さくなってしまい、
描き直すのはちょっとめんどい・・・的なw
ということで、
今回は、
ざっくりと解説していきたいと思います‼️
今回は大問1についてのみです★
(1)は、代入するだけです‼️
f(m,1)がわかりやすく、
2の累乗が一般式だというのが、わかってきます‼️
この結果と、与えられている値のf(1,1)とf(2,2)とf(3,3)から、
f(n,1)を予測していきます‼️
すると、
どうやら奇数を網羅していることがわかるので、
2n-1となるわけです🤔✨
(2)は、
(1)の答えを使って代入するだけです★
2016という答えが出てきます😝
これは、西暦ネタというらしく、
大学受験ではよく使われるみたいですね☺️
(3)は、
まず、整数のなかでも奇数は、
(1)のf(n,1)から答えから自明です‼️
偶数については、
2で割り続けるといつか奇数となりますね🤔
かつ、(1)のf(1,m)の答えから
2の累乗で表されているので、
f(n,m)で表される整数も、必ずここに当てはまることになります‼️
つまり、
どんな数字も表すことができるということですね☺️
さて、
いかがだったでしょうか、
数式を使わずに説明するのが、
とても難しいことがわかりましたw
解法の一つなので、
みなさんも、
ぜひ解いてみてください😝